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Abstract

This paper studies the effects of scale and competition on firm-level innovation in

China. Using both econometrics and a calibrated structural model, we disentangle

the mechanisms via which trade affects innovation, focusing on scale effects (impact

on market size) and competition effects (impact on markups). The structural model

also examines heterogeneity of these affects across firms, which leads to a new mech-

anism for competition effects: firms can escape the competition by innovating into

a market segment where competition is less intense. The econometric estimates and

simulations of the calibrated structural model indicate that both scale and competi-

tion effects are important for understanding how trade affects innovation in China. In

particular, scale effects of trade on innovation are positive in the aggregate, whereas

competition effects are negative. However, when firms can innovate to escape the

competition, greater competition induced by lower trade barriers can lead firms to

increase innovation rather than reduce it. Finally, the calibrated model allows us to

examine the impact of reductions in trade costs between China and the OECD on

quality, productivity, markups and innovation around the world.
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1 Introduction

This paper studies how trade affects firm-level innovation in China through two chan-
nels: scale and competition. On the one hand, an increase in the size of the market avail-
able to a firm can raise the returns to successful innovation and hence induce greater in-
vestment in innovative activities. At the same time, firms in a larger market face tougher
competition, which may either incentivize or disincentivize innovation. We conjecture
that these market size and competition effects are precisely what drive innovation in
China.

To investigate, we study Chinese firm-level data matched with R&D data, patent data,
and international transactions data. We use the data to examine whether rising rates of
innovation by Chinese firms can be explained by improved access to foreign markets,
and whether China’s rising productivity and quality can be explained by rising rates of
innovation. Econometric evidence strongly suggests that increases in foreign market size
have positive effects on firm innovation, while greater competition within China as well
as fro other Chinese firms in export markets reduces innovation by Chinese firms in the
aggregate. These econometrics effects are essentially difference-in-difference results that
compare across firms and time the effects of scale and competition. They are thus relative
effects. A calibrated model is needed to estimate level effects.

Motivated both by the empirical evidence and the need for results about level effects,
we develop a dynamic structural trade model that features both endogenous competition
and innovation. In the model, firms choose R&D investments to move up a product grade
ladder, where grades differ endogenously in terms of competitiveness and profitability.
The incentives for innovation depend on the size of the market and the levels of compe-
tition within each grade, which in turn depend on the trade environment. We calibrate
the key parameters of the model using the matched Chinese firm-level data, and sim-
ulate counterfactuals to study both the aggregate effects of trade on innovation as well
the decomposition of these effects into scale and competition effects. Simulations of the
calibrated structural model indicate that both scale and competition effects are important
for understanding how trade affects innovation in China. In particular, when firms can
innovate to escape the competition, greater competition induced by lower trade barriers
can lead firms to increase rather than reduce innovation.

The contributions of this paper to the literature on trade and innovation are thus
threefold. First, it extends the body of work that studies the interaction between mar-
ket size and firm-level innovation to the context of international trade by Chinese firms.
In a domestic setting, Acemoglu and Linn (2004) find large effects of potential market
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size (driven by US demographic changes) on innovation by pharmaceutical firms, while
Beerli et al. (2018) find positive effects of domestic market size on innovation by Chinese
firms across durable goods sectors. In an international trade setting, Lileeva and Trefler
(2010) find positive effects of lower US tariffs on innovation by Canadian plants, while
Bustos (2011) finds positive effects of reductions in Brazilian tariffs through the MERCO-
SUR trade agreement on innovation by Argentinian firms. Similarly, Aw et al. (2011) find
that larger export markets for Taiwanese electronics firms leads to greater investments in
innovation, while Coelli et al. (2018) find large effects of tariff reductions on firm-level
innovation worldwide as measured by patent data. Our results show that these positive
scale effects of trade on innovation characterize innovative behavior by Chinese firms as
well.

Second, we expand on the area of the literature focusing on the interaction between
competition and firm-level innovation. In particular, we study a model with both endoge-
nous competition (variable markups) as well as a motive for firms to innovate in order to
move into market segments with less competition. In this sense, we embed the “escape-
the-competition” motive for innovation emphasized by Aghion et al. (2001, 2005) into a
general equilibrium trade model, and show that this mechanism is important for under-
standing innovation by Chinese firms. Our study of both scale and competition effects
is similar in spirit to work by Aghion et al. (2017) and Impullitti and Licandro (2018), al-
though the key economic mechanisms differ in a meaningful way. In Aghion et al. (2017),
there is no “escape-the-competition” motive for innovation, and greater competition un-
ambiguously disincentivizes innovation. In Impullitti and Licandro (2018), competition
can induce greater innovation amongst oligopolistic firms due to improvements in static
efficiency, although the extensive margin of competition (number of rival producers) is
not considered. Fieler and Harrison (2018), who also study Chinese firm-level data, find
that tariff reductions in a firm’s downstream sector lead to increases in firm productivity,
and argue that this can be rationalized by firms innovating to escape the indirect compe-
tition that propagates upstream via input-output linkages. In contrast, we abstract from
input-output linkages to focus on ‘escape the competition’ responses of innovation to di-
rect competition within a firm’s own market.

By focusing on heterogeneous effects of competition across firms, we also aim to pro-
vide some resolution to the question of whether trade-related competition induces or
reduces innovation. As yet, the empirical evidence is mixed: for instance, Autor et al.
(2017) find that greater competition from Chinese imports led US firms to reduce inno-
vation (as measured by patents), whereas Bloom et al. (2016) find that rising competi-
tion from Chinese imports led to an increase in innovative activities within firms most
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affected by Chinese import competition. Within the Chinese market, Bombardini et al.
(2018) find that increased foreign import competition induced by China’s accession to the
WTO encouraged innovation for only the most productive Chinese firms. These findings
are consistent with our model once the combined effects of scale and competition across
firms in different market segments are considered. These results also have important pol-
icy implications, as Akcigit et al. (2017) show how R&D subsidies in response to foreign
competition can be welfare-improving in the long-run, while import tariffs create large
dynamic losses.

Finally, we contribute to the literature by studying both scale and competition effects
in a general equilibrium setting. In this vein, Atkeson and Burstein (2010) argue that
although lower trade barriers can encourage innovation, the resulting welfare gains are
small because of offsetting general equilibrium effects that operate via firm entry. Build-
ing on this work, Atkeson and Burstein (2018) argue that there is limited scope for innova-
tion subsidies to generate increases in aggregate productivity and output. However, these
theoretical analyses are conducted in an environment with constant markups, and hence
consider only the scale effects of trade on innovation. Our work aims to extend these
general equilibrium results by considering economies with endogenous competition as
well.

The outline of the paper is as follows. Section 2 begins by describing the data. Sec-
tion 3 then discusses econometric evidence for scale and competition effects of trade on
innovation. Section 4 then develops the closed economy structural model, while section
5 extends the model to an open economy. Next, section 6 describes calibration of the
model’s parameters, and section 7 discusses the counterfactual exercises that we employ
the model to study. Finally, section 8 concludes.

2 Data

We use the 2000–2006 Chinese Manufacturing Enterprises (CME) database, which in-
cludes all state-owned enterprises (SOEs) and large non-SOEs whose annual sales are
more than RMB 5 million (approximately $600,000US). We clean the data as in Brandt et
al. (2014), Brandt et al. (2012) and Brandt et al. (2017). Of note, we delete firms that report
less than 8 employees in all years and, when calculating productivity and markups, drop
firms that switch 2-digit industries. In addition, we clean up the data following Feenstra
et al. (2014), meaning, we delete observations with (a) incomplete or internally inconsis-
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tent financial variables, (b) fewer than 8 employees, and (c) invalid entry for year.1

We merge theses data with export and import data at the HS8 level from the Chinese
General Administration of Customs. We match the CME and customs data following Yu
(2015), matching firm name or zip code or telephone number. We are able to match 76,946
firms, which is more than 40% of the firms and 53% of the export value in the customs
data.2 There are two sources of export data because the CME itself reports the total value
of a firm’s exports (not disaggregated by HS8 or destination). If a firm is not matched to
the customs database but reports zero exports (as opposed to missing exports) then we
treat it as a non-exporter.3 See the online appendix for details of the CME, the customs
data and the matching algorithm.

If the CME firm is matched to the customs data then we use the customs data. This
is 16% of our sample. If it is not matched then we use CME exports. These exports are
sometimes missing and we set them to zero in cases where the firm always reports either
zero or missing exports and never positive exports.

Our key variables are exports, quality, markups, and three measures of innovation.
We discuss each of these in turn.

2.1 Innovation data

We use three measures of innovation. The first is patents, which we merge in with the
CME-customs matched data. Unmatched firms are assumed to have no patents. Because
a small number of firms have thousands of patents, we top code patents at 50; however,
our results are not sensitive to this. The second innovation measure is R&D. We work
with 100(R&D/Sales) and because a few firms report inexplicably high values we top
code the data at 20%. The third measure is the share of total sales that are generated by
new products. These data are from a new-products question in the CME survey.

We note that the patent and R&D data are skewed, with very few firms reporting
positive amounts of one or the other. We therefore also use the principal component of
the three measures. Specifically, we calculate the principal component separately by 2-
digit CIC industry.

1In this draft of the paper, we also delete observations with missing firm identification. This will change
in future drafts.

2The 53% is comparable to the match in the Canadian database. The ‘lost’ export value is due to the fact
that many firms export via trade intermediaries.

3There are almost no instances in which a matched firm has (non-zero) customs exports and zero CME
exports.
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2.2 Markups (and RTFP)

We estimate markups using De Loecker and Warzynski (2012) and so must first esti-
mate TFP. TFP estimation is described in detail Orr et al. (forthcoming). We have checked
that the data used produces almost identical aggregates to those used in We start by drop-
ping firms from the data based on four criteria that are relevant for productivity analysis.
First, the firms must have complete data on sales, employment, material costs, and capi-
tal. Second, they cannot have ‘holes’ over time, i.e., if they appear in years t0 and t1 then
they must appear in all years between t0 and t1. Third, they cannot switch industries or
cities over time (city switching is very rare). Industries are defined at the 2-digit Census
Industry Classification level (CIC-2). Fourth, we drop Tobacco (CIC-2 = 16) because it has
too few firms. This leaves us with 772,788 firm-years and 298,259 firms in 28 industries.

To prepare the data for estimation, we deflate each firm’s sales using an industry-
level price deflator. We deflate materials input expenditures at the industry level using
input price deflators that have been filtered through the Chinese input-output tables.4

We estimate the production function by CIC-2 industry for Cobb-Douglas and translog,
and for value-added and gross-output production functions. As discussed in Orr et al.
(forthcoming), the translog gross-output production function estimates are most sensible
as judged by input elasticities, returns to scale, and stability across specifications.5 In
particular, we consider five different variants of the proxy-variable approach:

1. Case 1 (Vanilla): This specification is exactly as in Ackerberg et al. (2015).

2. Case 2 (Exporting): Same as vanilla except we allow the law of motion for firm
level productivity to depend on lagged export status. This controls for learning-by-
exporting effects as in De Loecker and Warzynski (2012) and De Loecker (2013).

3. Case 3 (Attrition): Same as vanilla, except we include the Olley and Pakes (1996)
selection correction terms to correct for attrition bias.

4. Case 4 (Over-identification): Same as vanilla, except we include lagged capital and
lagged capital square as extra instruments.

5. Case 5 (Full Model): The case 2-4 modifications of case 1 are all introduced simulta-
neously.

4We measure labour input using employment and thus do not need a labour deflator. However, capital
is simply measured in RMB.

5The Cobb-Douglas elasticities (coefficients on capital, labour and materials) are very similar to those
reported in Brandt et al. (2014) and Brandt et al. (2017). We are extremely grateful to these authors for pro-
viding time-consistent definitions of firms as well as concordances, deflators, and capital stock adjustments.
See Orr et al. (forthcoming).
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Figure 1 reports histograms for the elasticity of output with respect to labour, capital and
materials. Each panel reports five histograms, one for each specification listed above and,
as is apparent from the fact that the five histograms sit on top of each other, the choice of
specification makes little difference. As is standard, the labour and capital output elastic-
ities tend to be close to zero (and infrequently negative for some firm-year observations).
The returns to scale tend to be strongly concentrated around 1, which is reassuring. Fi-
nally, there is little variation across specifications in the distribution of revenue TFP.

With revenue TFP estimates in hand we estimate markups using the approach in De
Loecker and Warzynski (2012). Since labour shares are notoriously low in the CME (see
e.g., Brandt et al., 2014), we follow Brandt et al. (2017) in basing markups on material
inputs. These appear in the bottom right panel of table 1. We only report case 1 and case
5, but the other three cases are very similar. Note that the log markups are relatively close
to 0, with most markups being less than 50%. This is much more sensible than the large
markups reported in other research.

2.3 Quality

We will need quality to motivate our model. We note that our method only allows
us to calculate quality for firms that are matched to the customs data because these are
the only firms for which we have quantity and price (unit value) data rather than just
revenue data. As a result, we use the quality data to motivate our results, but most of our
empirical work will be based on the larger CME sample.

Are starting point is not the demand system of our theory, but the Berry (1994) method.
Given the richness of our data, we are also able to improve on the implementation pro-
posed by Khandelwal (2010) and to construct a novel instrument that avoids some of
the criticisms of existing instruments (Ackerberg et al., 2007). Consider a Chinese firm f

that exports an HS8 good h to destination d in year t. A market is a triplet (h, d, t) and
let Ωhdt be the set of firms selling into the market. In what follows, we will repeatedly
see this market triplet. How much consumers in d buy will depend not just on prices in
the market, but on outside options. For outside options, it will be enough here to model
the upper-tier nests. Let H be an upper-tier nest, which in practice is an HS2 or HS4
category. Firm f ’s market share is pfhdtqfhdt/

∑
f ′∈Ωhdt

(pf ′hdtqf ′hdt). This is a core object
in demand estimation. Interestingly, our rich data allow us to model the denominator∑

f ′∈Ωhdt
(pf ′hdtqf ′hdt) as a fixed effect αhdt. Notice also that Berry’s random component of

utility will also be subsumed by this fixed effect so that we do not have to estimate this
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Figure 1: Translog, Gross-Output Production Functions, RTFP and Markups
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term. Thus, we are left with

ln qfhdt = αhdt + β ln pfhdt + λ∗fhdt (1)

where λ∗fhdt is a measure of the quality of what firm f sells into market (h, d, t).6

Aggregating quality from the firm-market level (λ∗fhdt) to the firm level is problematic
because quality is never comparable across goods h. To partially address this, we demean
quality using the average level of quality in market (h, d, t), i.e., we use λ∗fhdt − λ

∗
hdt. We

define a firm’s quality in year t as

λft ≡
∑
(h,d)

ωfhdt

(
λ∗fhdt − λ

∗
hdt

)
(2)

where ωfhdt is Chinese firm f ’s exports in year t to market (h, d, t) as a share of its total
exports in year t:

ωfhdt ≡
pfhdtqfhdt∑

(h′,d′) pfh′d′tqfh′d′t

We now turn to instruments. We need a pure supply shock and must avoid demand
shocks. One common assumption is that supply shocks are spatially correlated while de-
mand shocks are not. This leads to the Hausman-Nevo instrument which uses the prices
of firms in nearby regions as an instrument for the firm’s price. We do not think this is a
good assumption in our context. Our rich data allow us to take a different approach that
has not appeared in the literature. While a firm may be a large employer in its industry
within a city, the firm is typically a small employer in its city overall. Consider a firm in
a 2-digit CME industry in a city and calculate the average wage paid by firms in that city
who are not in that industry. This is our instrument.

Finally, we follow Khandelwal (2010) in winsorizing price. We do so by first demean-
ing price within a market (h, d, t), then winsorizing prices above the 95th percentile and
below the 5th percentile. Finally, we add the market mean back in.

The results appear in table 1. In our main results below we will define nests at the
HS2 level, which has almost 100 products. In order to present the results more, clearly,
here we first present results at a more aggregate level of HS sections. The table presents
estimates of β in equation (1). Consider the first row, which pools all firms exporting
chemicals (HS2 codes 28–38). The ‘Second Stage’ presents the IV estimate of β. ‘OLS’

6We also exploit information about the mode of transportation m, e.g., air or waterborne. This amounts
to treating the market not as an (h, d, t) tuplet but as an (m,h, d, t) tuplet. It makes no difference whether
we aggregate over mode, but we think that an HS8 product shipped by air may be quite different than one
shipped by sea. At any rate, this is a minor point empirically.
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presents the OLS estimates of β. ‘First Stage’ and ‘Reduced Form’ are the coefficients on
the instrument when the dependent variable are price and quantity, respectively. Notice
that the IV estimates is always negative and more negative than the OLS estimate, as
expected. The IV estimate is also almost always less than -1 which means that demand
is elastic as required. Notice that there are large numbers of observations, large numbers
of firms, and large numbers of markets. We can reject endogeneity (‘K-P’) and the joint
hypothesis of endogeneity and the exclusion restriction (‘A-R’).

We now turn to the specifications that we use to generate our quality measures. We
consider four specifications. We define the nest either at HS2 or HS4 and we either have
just one instrument or consider a second instrument. The second instrument is the aver-
age number of export destinations per HS2 in a firm’s city-year, excluding export destina-
tions exported to by firms in target firm’s own 2-digit CME industry. As in Melitz (2003)
and Melitz and Ottaviano (2008), the more destinations exported to, the more productive
is the region or the lower are the exporting fixed costs of the region, both of which are
‘supply shocks.’ For the case where we have one instrument and HS2 nests, 70 of 85 HS2
products have negative IV price elasticities. At the 5% significance level, 49 are negative
and only 1 is positive.

Figure 2 shows the distribution of quality across all four specifications. As is apparent,
they are very similar in distributions. Further, in the empirics to come, we get identical
results for all four.

3 Econometric Results

Let f index firms, i index 4-digit CME manufacturing industries (of which there are
about 450), c index cities (of which there are about 370) and t index years (2000-2006). We
are interested in the impact of variables xft that measure scale and competition on out-
comes yft that include quality, markups, RTFP, and innovation. We consider regressions
of the form

yft = αf + αit + αct + βxft + δWft + εft . (3)

αf is a firm fixed effect. Wft collects three time-varying firm characteristics: (1) a binary
variable for whether the firm is a state-owned enterprise (SOE), (2) a binary variable for
whether the firm has foreign investors, and (3) the average wage of firms in the same city
as f , but not in the same 2-digit industry as f . The latter controls for cost shocks.7 There

7We choose 2- rather than 4-digit because, for example, wage pressures likely apply to a broader 2-digit
industry such as automotive rather than a narrower 4-digit industry such as a specific auto part.
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Figure 2: Distribution of Quality across Four Specifications
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Notes: This figure is a kernel density for four different quality measures. Quality is at the
firm level (see equation 2) and there are 105,093 firm-year observations for each density. Two
densities are based on HS2 and two on HS4. Two densities are based on the wage instrument
and two are based on both the wage and extensive-margin instruments.
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are likely pre-trends that we cannot control for because the data do not go back to a time
when China had very little exposure to the international economy (say, 1990). Further, in
an economy as dynamic as China’s there are likely to be unobservable shocks that vary
over time and across both industries and cities. It is thus essential to control for industry
trends and local (city) trends as much as possible. Possible city trends include differential
migration patterns and differential improvements in local amenities such as universities.
We therefore include industry-year fixed effects αit at the most detailed level available
(4-digit industry) as well as city-year fixed effects αct. Such extensive fixed effects are
uncommon in research using Chinese firm-level data.8

Throughout, we cluster standard errors by firm so as to allow for serial correlation.
We have also briefly experimented with two-way clustering and initial results suggest
that this makes no difference.

3.1 Scale: Exporting

In this section we examine an increase in the size of the market a firm faces. There are
two ways in which a firm might experience an increase in the demand for its products.
The first comes from an increase in the domestic or Chinese demand for its products, the
second from foreign demand. Our data record each firm’s total sales and exports at the 4-
digit industry level so that we can compute a firm’s domestic sales. Unfortunately, these
domestic sales are subsumed in our industry-year fixed effects αit.9

Firm-level exports Xft provide sample variation that goes beyond 4-digit industries
both because some of the export data are at the HS8 level and because even within a 4-
digit industry not all firms export. Exports are not perfect for our needs because they are
in value terms and thus capture both the scale of the foreign market and the markups
charged in the foreign market, i.e., Xft is not a pure measure of scale or competition as
defined above, but is a combination of the two. That said, the scale component likely
dominates the competition component by orders of magnitude. A simple calculation
suggests that 83% of the vast growth in Chinese exports is due to growth in quantities

8We do not include industry-year fixed effects αic because these are largely subsumed by the firm fixed
effects i.e., there are relatively few firms that switch industry or city. Preliminary research indicates that
none of our results change if in addition we add industry-city-year fixed effects where the industry is at
the 2-digit level. This lack of change mitigates some if not most of our concerns about pre-trends and
unobservables.

9An alternative approach is to find a time- and firm-varying variable. One such variable is the a count of
the number of kilometres of arterial highway within 20 kilometres of the firm’s address. As these highways
develop, the firm experiences a firm-specific increase in its market potential. See Liu et al. (2018). Initial
explorations of the highway data point to the presence of scale effects from domestic market size.
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rather than markups. This should come as no surprise.10

A firm’s exports are endogenous and we create a unique instrument comprised of two
elements, a standard Bartik instrument and a predicted probability of exporting. We first
describe the Bartik component. Consider a firm that first exported in year t0. Let ωfht0
be the share of the firm’s export sales in year t0 that are accounted for by good h. If the
firm is matched to the customs data then h is an HS8 product. If not, then h is a 4-digit
industry code and ωfht0 = 1 if the firm is in industry h and equals 0 otherwise. Let mht

be world imports of Chinese good h in year t. This is a measure of the demand shock for
Chinese good h in year t: The larger is mht, the larger is a Chinese firm’s potential foreign
market. Aggregating up from the product level to the firm level using the firm’s initial
product weights yields: ∑

h
ωfht0mht . (4)

This is the Bartik component.11

Whether the firm takes advantage of foreign demand shocks depends on the fixed and
marginal costs of exporting. We assume that the probability a firm exports depends on its
current RTFP (as in Melitz 2003), on its past history of exporting (as in Roberts and Tybout
1997), and on its city (some cities are closer to ports than others). For a firm in year t and
city c, we compute the firm’s percentile in the distribution of RTFP among firms in that
year in that city. Denote this percentile by percRTFPft .12 In the first year we observe the firm
(year t0) we regress an exporter dummy on percRTFPft0

. This generates a prediction pXft0 that
the firm exports in year t0. In subsequent years (t > t0), we regress the exporter dummy
on both percRTFPft and a dummy for whether the firm exported in the previous year. This
generates a prediction pXft that the firm exports in year t > t0.

10Denote export quantities, prices, and costs by q, p, and c , respectively. Export values are X = p · q and
markups are µ = p/c−1. Thus, ∆ lnX = ∆ ln q+∆ ln p = ∆ ln q+∆ ln(p/c)+∆ ln c = ∆ ln q+∆ ln(µ+1)+
∆ ln c. In our data between 2000 and 2006, ∆ lnX = 1.44 and ∆ ln(µ + 1) = 0.05. Further, the input with
by far the largest cost share is materials and its deflator rose by 0.14 log points i.e., ∆ ln c = 0.14. Hence
∆ ln q = 1.44 − 0.05 − 0.14 = 1.25 and ∆ ln q/∆ lnX = 0.83. That is, the dominant driver of exports has
been quantities (scale) rather than markups (competition) or input costs.

11We use world imports from China. We could also consider world imports from countries that are ‘sim-
ilar’ to China. The idea is that this would net out China-specific costs shocks. We have experimented with
this and obtained similar results. However, there are limitations of this approach. First, the most similar
countries to China are low- and middle-income countries such as Viet Nam and Hungary. But as Schott
(2008) and Sutton and Trefler (2016) have documented, 2000–2006 world imports from these countries com-
bined covered a much smaller range of goods than world imports from China. (In the formula above, mht

was zero for a majority of h.) Restated, these countries are not similar to China. Second, our industry-year
fixed effects and city-year fixed effects capture most if not all of the China-specific costs shocks that lead to
exclude China when computing the demand shock. For example, suppose a Chines industry improves its
technology rapidly or a Chinese city builds a technology park. These are subsumed in the industry-year
and city-year fixed effects.

12We suppress the city subscript because firms do not switch cities so that c is implied by f .
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Multiplying the probability that a firm exports by the size of foreign demand shock
gives us our instrument for the log of firm exports ln(1 +Xft):

Zft ≡ pXft · ln
(

1 +
∑

h
ωfht0Mht

)
(5)

3.1.1 Scale: Impact of Exporting on Quality, Markups and RTFP

Armed with this instrument, we present the estimates. The first two columns of table
2 display OLS and IV estimates of equation (3) where the dependent variable is qual-
ity. There are 78,285 firm-year observations.13 There are 25,406 firm fixed effects, 1,949
industry-year fixed effects and 1,329 city-year fixed effects. Standard errors clustered
by firm are reported in parentheses. The key independent variable is the log of exports
ln(1 + Xft). Its coefficient is statistically significant and positive in both the OLS and
IV specifications. The IV result implies that increased exporting causally leads to higher
quality. IV is smaller than OLS, as would be expected if higher quality caused more ex-
porting.

The first stage appears in the bottom panel. This is a regression of log exports on the
instrument Zft and all the exogenous second-stage variables. The instrument coefficient
of 0.021 has a small standard error of 0.0013. The panel also reports the Kleibergen-Paap F
statistic for weak instruments (which should be greater than 20) and the Anderson-Rubin
p value for the joint null of weak instruments and the exclusion restriction (it should be
less than 0.01).14

The ‘RF’ column reports the reduced form. It is an ‘intention to treat’ that captures
the impact of the instrument directly on the outcome. The instrument is significant and
positive, as expected.

The next three columns of table 2 report results for the log of markups. The dataset
is much larger, with 791,229 firm-year observations spread across 222,428 firms, 3,395
industry-year pairs, and 2,380 city-year pairs. The IV and OLS results are very similar,
the first stage is strong, and the reduced form is positive as expected. This leads us to
conclude that an increase in exporting induced by a positive foreign demand shock leads
to increased markups.15

13This is a restricted sample because quality is only available for firms that have been matched to the
customs data. Also note that in reporting the number of observations, we drop firms that only appear in
one year.

14We apologize that, due to time constraints, we are not reporting on coefficient magnitudes.
15Of lesser importance, the coefficient on city wage is negative. Recall that in each year t, this is the
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Table 2: Dependent Variables: Quality, Markups and RTFP

Quality Markups RTFP Innovation - Principal Component
OLS IV RF OLS IV RF OLS IV RF

ln (1+Exports )ft 0.262*** 0.090*** 0.033*** 0.036*** -0.072*** -0.209***
(0.003) (0.032) (0.004) (0.012) (0.004) (0.015)

Instrument for 0.0019*** 0.007*** -0.038***
ln (1+Exports )ft (0.0007) (0.002) (0.003)

Controls (f ,t )

SOE Status 0.061 0.051 0.047 -0.587*** -0.588*** -0.585*** -0.101 -0.088 -0.105
(0.045) (0.044) (0.046) (0.064) (0.064) (0.064) (0.083) (0.084) (0.083)

Foreign Invested 0.004 0.005 0.004 -0.110** -0.111** -0.094** -0.181*** -0.107* -0.210***
(0.009) (0.009) (0.010) (0.045) (0.046) (0.045) (0.060) (0.060) (0.060)

City Wage 0.199 0.177 0.162 -1.902*** -1.925*** -1.914*** -2.300*** -2.250*** -2.317***
(0.291) (0.304) (0.320) (0.386) (0.386) (0.386) (0.504) (0.504) (0.504)

R 2 0.830 0.813 0.791 0.902 0.902 0.902 0.881 0.881 0.881
# observations 78,285 78,285 78,285 791,229 791,229 791,229 791,229 791,229 791,229
# firm f FEs 25,406 222,428 222,428
# year-ind4 (i ,t ) FEs 1,949 3,395 3,395
# year-city (c ,t ) FEs 1,329 2,380 2,380

First Stage
Instrument for 0.021*** 0.182*** 0.182***

ln (1+Exports )ft (0.0013) (0.0022) (0.0022)

Kleibergen-Paap (F ) 260 6,757 6,757
Anderson-Rubin (p ) 0.008 0.004 0.000

Notes: This table presents estimates of equation (3) where the dependent variable is quality, log markups or
RTFP. For each dependent variable, there are three columns: OLS, IV, and reduced form. Exports ln(1+Xft)
are the endogenous variable. The first stage appears in the bottom panel where the coefficient on the
equation (5) instrument for ln(1 + Xft) is reported. The panel also reports the Kleibergen-Paap F statistic
for weak instruments (we require F > 20) and the Anderson-Rubin p value for the joint null of weak
instruments and the exclusion restriction (we require p < 0.010). All specifications have firm fixed effects,
4-digit industry-year fixed effects, and city-year fixed effects. ‘SOE Status’ is a binary variable equalling
one if the firm is a state-owned enterprise. ‘Foreign Invested’ is a binary variable equalling one if the firm
is at least partially foreign-owned. For each year t, (City Wage)ft is the average wage of firms in the same
city as f , but not in the same two-digit industry as f . The coefficients and standard errors in the log markup
and RTFP columns are multiplied by 100. Standard errors appear in parentheses and are clustered at the
firm level.
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The last three columns of table 2 report results for revenue TFP. If higher RTFP causally
leads to more exporting then we expect the estimated coefficient on exporting in the RTFP
equation to be smaller (in this case more negative) for IV than OLS. This is what we
find. The surprising finding is that differential increases in exporting lead to differential
decreases in RTFP, contrary to what Lileeva and Trefler (2010) and others have found.
However, since exporting raises quality, a likely explanation is that higher-quality goods
are more technically difficult to produce and so exporting reduces RTFP by shifting the
firm’s focus away from cost cutting and towards higher quality.16

3.1.2 A Diff-in-Diff Caveat: Levels versus Relatives

We conclude this discussion with a very important caution. Our econometric esti-
mates are essentially difference in difference estimates i.e., they compare firms whose
exports have increased with those whose exports have not increased. We thus cannot an-
swer questions about the level effects of exporting on quality, markups, or RTFP. All we
can speak to is the differential effect of exporting on quality, markups and RTFP. Thus, for
example, we cannot conclude from the negative RTFP coefficient that exporting lowers
the level of RTFP. Discussion of level effects must await the calibrated model.

3.1.3 Scale: The Impact of Exporting on Innovation

Since so many firms report zero for one or more of our three measures of innovation,
we start by computing the principal component of the three measures: (1) number of
patents, (2) R&D as a share of sales, and (3) new product sales as a share of total sales.
The principal component is estimated separately for each 2-digit industry. Table 3 reports
the results of using this principal component as a dependent variable. The first stage
is again strong, the OLS and IV results are very similar, and the OLS, IV and reduced-
form results are all positive and statistically significant. This means that exporting has a
positive causal impact on innovation. Again, this is a differential effect rather than a level

wage paid by firms in the same city as firm f , but not in the same 2-digit industry as firm f . The fact that
the coefficient is negative suggests that, even after controlling for city-year and industry-year fixed effects,
there are some industry-city-year unobservables that matter for markups. These unobservables may have
to do with wages of workers with certain skills or the price of certain types of industrial land. Note that
none of our results change when we exclude the city wage variable, suggesting that the unobservables
correlated with city wage are not correlated with our dependent variables. Nor do results change when
2-digit industry-city-year fixed effects are added.

16Alternatively, higher quality requires more expensive inputs and, absent firm-level output and input
price deflators, quality may lead to downward bias in the measurement of RTFP. This happens if lack of
firm-level input deflators dominates lack of firm-level output deflators.
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effect.
To investigate further, table 4 reports the results separately for each of the three mea-

sures of innovation. Exporting has a positive causal effect on all three measures.
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Table 3: Principal Component of Innovation

Quality 

ln (1+Exports )ft 

Instrument for
ln (1+Exports )ft 

Controls (f ,t )

SOE Status

Foreign Invested

City Wage

R 2 

# observations
# firm f FEs
# year-ind4 (i ,t ) FEs
# year-city (c ,t ) FEs

First Stage
Instrument for

ln (1+Exports )ft 

Kleibergen-Paap (F )
Anderson-Rubin (p )

Innovation - Principal Component Profits / Assets
OLS IV RF

0.010*** 0.013***
(0.0006) (0.0018)

0.0026***
(0.00037)

0.042*** 0.042*** 0.043***
(0.009) (0.009) (0.009)

0.037*** 0.036*** 0.042***
(0.007) (0.007) (0.007)

0.078* 0.078* 0.079*
(0.046) (0.046) (0.046)

0.662 0.662 0.662
762,702 762,702 762,702

247,298
2,923
2,040

0.205***
(0.0024)

7,266
0.000

Notes: This table presents estimates of equation (3) where
the dependent variable is the principal component of (1)
number of patents, (2) R&D as a share of sales, and (3) new
product sales as a share of total sales. The principal compo-
nent is calculated separately by 2-digit industry. The table
has the same structure as table 2: See the notes to that table
for details. Standard errors appear in parentheses and are
clustered at the firm level.
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Table 4: Patenting, R&D and New Product Sales

Quality 

ln (1+Exports )ft 

Instrument for
ln (1+Exports )ft 

Controls (f ,t )

SOE Status

Foreign Invested

City Wage

R 2 

# observations
# firm f FEs
# year-ind4 (i ,t ) FEs
# year-city (c ,t ) FEs

First Stage
Instrument for

ln (1+Exports )ft 

Kleibergen-Paap (F )
Anderson-Rubin (p )

Patents R&D / Sales (New Product Sales) / Sales
OLS IV RF OLS IV RF OLS IV RF

0.942*** 2.125*** 0.372*** 0.624*** 0.122*** 0.101***
(0.121) (0.375) (0.052) (0.185) (0.008) (0.025)

0.437*** 0.128*** 0.021***
(0.077) (0.038) (0.005)

-1.658 -1.785 -1.594 8.630*** 8.603*** 8.659*** -0.070 -0.067 -0.058
(1.242) (1.242) (1.241) (1.124) (1.124) (1.125) (0.123) (0.123) (0.123)

-2.268* -2.922** -1.901 6.243*** 6.104*** 6.403*** -0.037 -0.025 0.022
(1.298) (1.309) (1.298) (0.733) (0.742) (0.733) (0.101) (0.102) (0.101)

0.056 -0.074 0.137 5.560 5.532 5.594 1.146 1.148 1.158
(7.820) (7.818) (7.821) (4.134) (4.134) (4.135) (0.730) (0.730) (0.731)

0.629 0.629 0.629 0.570 0.570 0.570 0.687 0.687 0.687
762,702 762,702 762,702 762,702 762,702 762,702 762,702 762,702 762,702

247,298 247,298 247,298
2,923 2,923 2,923
2,040 2,040 2,040

0.205*** 0.205*** 0.205***
(0.0024) (0.0024) (0.0024)

7,266 7,266 7,266
0.000 0.001 0.000

Notes: This table presents estimates of equation (3) where the dependent variable is either (1) number of
patents, (2) R&D as a share of sales, or (3) new product sales as a share of total sales. See table 2 for details.
The coefficients and standard errors in the R&D and new sales columns are multiplied by 100. Standard
errors appear in parentheses and are clustered at the firm level.
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3.1.4 Scale: Heterogeneous Impacts of Exporting

Finally, we explore how the causal impacts of exporting vary by firm characteristics.
Here we follow Aghion et al. (2017) in placing firms into quintiles based on sales and
then re-estimating the above models separately by quintiles. Quintiles are computed by
4-digit industry using sales in the first year the firm is observed. Quintile 1 is small sales
and quintile 5 is high sales. The results appear in table 5. Only the IV estimate of the
coefficient on exports ln(1 +Xft) are reported.

Before examining the results a caveat about the quality results is needed. While for the
most part a quintile has one fifth of the observations, this is not the case for quality where
there are very few small firms. The quality results are thus not trustworthy. Indeed, they
are never significant.

Looking across the other dependent variables, it is clear that there is substantial het-
erogeneity. This will be an important feature of the model below. In addition, larger firms
experience a relatively more positive impact of exporting on innovation, log markups,
and RTFP.17 This has a clear LATE interpretation: exporting is done by the firms which
expect a larger positive impact from exporting. This type of heterogeneity is consistent
with the heterogeneity discussed in Lileeva and Trefler (2010).

17We repeat that the level of the coefficients less important than the differential effect across deciles.
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Table 5: Heterogeneous Impacts of Exporting

ln(1+Exportsft) Std. Err. Obs R2 K-P (F) A-R (p)
PC - Innovation

Quintile 1 -0.002 0.008 130,006 0.615 384 0.82
Quintile 2 0.008 0.005 144,955 0.621 723 0.14
Quintile 3 0.005 0.004 153,796 0.632 1,202 0.26
Quintile 4 0.009 *** 0.003 159,665 0.648 1,890 0.01
Quintile 5 0.020 *** 0.003 166,414 0.728 2,859 0.00

Quality
Quintile 1 0.060 0.278 3,649 0.864 4 0.83
Quintile 2 0.029 0.124 8,264 0.833 18 0.82
Quintile 3 0.060 0.086 12,431 0.807 45 0.51
Quintile 4 0.100 0.072 18,718 0.823 54 0.20
Quintile 5 0.038 0.062 31,480 0.825 69 0.55

Markups
Quintile 1 -0.200 *** 0.063 133,062 0.865 395 0.00
Quintile 2 -0.050 0.041 152,876 0.906 636 0.22
Quintile 3 0.030 0.030 160,819 0.913 1,107 0.31
Quintile 4 0.049 ** 0.023 166,137 0.917 1,708 0.03
Quintile 5 0.083 *** 0.020 169,900 0.921 2,636 0.00

RTFP
Quintile 1 -0.492 *** 0.072 133,062 0.875 395 0.00
Quintile 2 -0.289 *** 0.050 152,876 0.879 636 0.00
Quintile 3 -0.219 *** 0.036 160,819 0.872 1,107 0.00
Quintile 4 -0.186 *** 0.029 166,137 0.870 1,708 0.00
Quintile 5 -0.170 *** 0.025 169,900 0.890 2,636 0.00

Notes: This table presents estimates of equation (3) for various dependent variables: the
principal component of innovation, quality, log markups, and RTFP. What is new is
that the equation is estimated separately by quintiles of the distribution of firm sales.
Quintile 1 is the smallest sales. Each row is an IV regression and only the IV coefficient
on ln(1 + Xft) is reported. The coefficients and standard errors for log markups and
RTFP are multiplied by 100. Standard errors appear in parentheses and are clustered at
the firm level.

22



3.2 Competition 1: Competition in China’s Domestic Markets

Typical measures of competition include concentration ratios, the Herfindahl index,
the Lerner price-cost index, and measures of entry. All of these are industry-year specific
and so are subsumed within our industry-year fixed effects. To examine the role of com-
petition we therefore need measures that have firm-level element. To this end, we classify
firms by their deciles within the distribution of some firm characteristics such as sales and
interact this firm-specific variable with industry-year competition measures. This gives
us a triple difference in which we examine effects of competition by small and large firms.

Two choices must be made. First, we use sales as the firm characteristics. However,
preliminary results point to similar results using markups or RTFP in place of sales. Sec-
ond, we use firm entry as our measure of competition. Again, preliminary results point to
similar results using the 4-firm concentration ratio and the Herfindahl index. We prefer to
use entry because this is what is most salient in light of the results by Brandt et al. (2017)
on the importance of entry for understanding productivity dynamics in China.

Turning to the details of constructing our competition measure, we start by calculating
sales deciles separately by 4-digit industry and year. Let i(f) be the 4-digit industry of
firm f in the year the firm is first observed, let Gi(f) be the distribution of sales for those
firms who are in i(f), let d index deciles, let df be firm f ’s decile, and let Dd

f be a binary
variable that equals one if firm f was in the dth decile of Gi(f) in its first year i.e., if
d = df . Next, we calculate the number of active firms by 4-digit industry and year (Nit)
and interact it with the firm’s decile to obtain a firm-specific measure of competition for
firm f in year t. We can do this in two ways. One is to include 10 regressors of the form
Nit·Dd

f , d = 1, . . . , 10. A more parsimonious approach which is valuable if the coefficients
on Nit ·Dd

f are monotonic in d is to use Nit · df . Finally, to emphasize that the level effect is
not identified because it is subsumed in the industry-year fixed effects, we useNit ·(df−1)

rather than Nit · df so that by construction the regressor is zero for the first decile.18

Nit is exogenous to the firm and Dk
f is predetermined so that we treat Nit ·Dk

f is exoge-
nous, i.e., no instrument is needed. Co-moving unobservables are a threat to identification
so once again we include the most detailed possible industry-year and city-year fixed ef-
fects. Identification is threatened only by unobservables that operate at the industry-city-
year level and that are not picked up by our city-industry wage variable.

Table 6 reports the IV results. Consider the ‘Quality’ column of the top panel. The IV
coefficient on Nit · (df − 1) is positive for quality, indicating that larger firms respond to

18Two observations: (1) Results using lnNit in place ofNit are identical. (2) With firm fixed effects, using
Nit is similar to using (Nit −Ni,t−1) ·Dd

f or (lnNit − lnNi,t−1) ·Dd
f . Indeed, we obtain similar results using

these variables. The model below points to using Nit rather than Nit −Ni,t−1.
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Table 6: Impacts of Competition in Chinese Markets on Quality, Markups, and RTFP

Quality Markups RTFP Profits / Assets
Innovation:   

Principal Component

Nit x (df - 1) 0.091 *** 0.006 *** -0.013 *** 0.027 ***
(0.0055) (0.0002) (0.0002) (0.0004)

Controls (f,t)
SOE Status 0.046 -0.006 *** -0.001 -0.001

(0.0459) (0.0006) (0.0008) (0.0014)

Foreign Invested 0.008 -0.001 *** -0.002 *** 0.001
(0.0102) (0.0004) (0.0006) (0.0020)

City Wage 0.114 -0.019 *** -0.024 *** -0.055 ***
(0.3203) (0.0038) (0.0050) (0.0098)

R2 0.793 0.904 0.883 0.736
# observations 78,285 791,229 791,229 630,069
# firm f FEs 25,406 222,428 222,428 191,210
# year-ind4 (i,t) FEs 1,949 3,395 3,395 2,384
# year-city (c,t) FEs 1,329 2,380 2,380 2,330

Interacting Nit with 10 Decile Dummies (Dfd)
Nit x Df1 0.00 0.00 0.00 0.00
Nit x Df2 0.06 -0.02 ** 0.00 0.02 **
Nit x Df3 0.17 *** -0.03 ** 0.00 0.05 ***
Nit x Df4 0.28 *** -0.03 ** -0.01 ** 0.08 ***
Nit x Df5 0.34 *** -0.03 ** -0.02 ** 0.10 ***
Nit x Df6 0.43 *** -0.02 ** -0.03 *** 0.13 ***
Nit x Df7 0.51 *** -0.01 * -0.05 *** 0.16 ***
Nit x Df8 0.57 *** 0.01 * -0.07 *** 0.19 ***
Nit x Df9 0.71 *** 0.04 ** -0.09 *** 0.22 ***
Nit x Df10 0.84 *** 0.08 ** -0.13 *** 0.24 ***

Notes: This table presents estimates of equation (3) for the dependent variables listed at the
top of the table. Each column presents OLS estimates of equation (3) for two different speci-
fications. In the first specification, the top panel, the key independent variable is the number
of firms in the industry-year (Nit) interacted with the firm’s decile in the distribution of sales,
df = 1, . . . , 10. More precisely, it is Nit · (df − 1) so that by construction the first decile has a
response normalized to 0. This is because only the cross-decile differential effect is identified,
not the level effect. Decile 1 contains the smallest firms. In the bottom panel, the key indepen-
dent variables are Nit interacted with a set of 10 binary variables Dd

f where Dd
f = 1 if firm f is

in decile d. The coefficients and standard errors for log markups amd RTFP are multiplied by
100. Standard errors appear in parentheses and are clustered at the firm level.
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competition by raising quality more (or by lowering quality less) than small firms.19 The
bottom panel shows that this effect is monotonic across deciles.

The RTFP column also shows substantial and monotonic heterogeneity: In response
to competition, larger firms reduce RTFP by as much as (or increase RTFP by less than)
smaller firms. This is consistent with the idea that in response to competition, firms up-
grade quality at the cost of lower RTFP. We will allow for this heterogeneity in our model.

The markup column shows that there is substantial heterogeneity in markup responses
to competition, but this heterogeneity is not monotonic. We will thus need to think about
a model which allows for non-monotonic markup responses.

Table 7 has the same structure as table 6, but with dependent variables that are related
to innovation. We see heterogeneity in responses across all the innovation measures. In
response to competition, larger firms either increase competition by more than smaller
firms or reduce innovation by less than smaller firms. The heterogeneity is more pro-
nounced for some measures of innovation than for others and, not unexpectedly, patent
heterogeneity is particularly skewed in the 10th decile.

19The expression in parentheses is a reflection of the fact that the econometrics do not deliver level effects.

25



Table 7: Impacts of Competition in Chinese Markets on Innovation

Quality

Nit x (df - 1) 

Controls (f,t)
SOE Status

Foreign Invested

City Wage

R2 

# observations
# firm f FEs
# year-ind4 (i,t) FEs
# year-city (c,t) FEs

Interacting Nit with 10 Decile Dummies (Dfd)
Nit x Df1 

Nit x Df2 

Nit x Df3 

Nit x Df4 

Nit x Df5 

Nit x Df6 

Nit x Df7 

Nit x Df8 

Nit x Df9 

Nit x Df10 

Innovation:   
Principal Component

Patents R&D / Sales
New Product Sales 

/ Sales

0.023 *** 0.024 *** 0.005 *** 0.210 ***
(0.0021) (0.0023) (0.0013) (0.0323)

0.043 *** -0.016 0.087 *** -0.064
(0.0086) (0.0124) (0.0112) (0.1238)

0.042 *** -0.019 0.064 *** 0.020
(0.0068) (0.0129) (0.0073) (0.1010)

0.081 * 0.003 0.056 1.173
(0.0462) (0.0782) (0.0413) (0.7313)

0.662 0.629 0.570 0.687
762,702 762,702 762,702 762,702
247,298 247,298 247,298 247,298

2,923 2,923 2,923 2,923
2,040 2,040 2,040 2,040

0.00 0.00 0.00 0.00
0.05 *** 0.01 ** 0.03 *** 0.30
0.08 *** 0.02 *** 0.02 ** 0.83 ***
0.07 *** 0.02 *** 0.02 *** 0.64 ***
0.07 *** 0.04 *** 0.03 *** 0.59 **
0.08 *** 0.04 *** 0.02 ** 0.79 ***
0.10 *** 0.06 0.03 *** 0.94 ***
0.11 *** 0.10 *** 0.02 ** 0.96 ***
0.17 *** 0.13 0.04 *** 1.55 ***
0.35 *** 0.35 *** 0.09 *** 3.02 ***

Notes: This table has the exact same structure as table 6, except that the dependent variables are different.
These are listed in the header. The coefficients and standard errors for R&D and new sales are multiplied
by 100. See the notes to table 6 for details. Standard errors appear in parentheses and are clustered at the
firm level.
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Figure 3: Competition 2 Measure

Foreign Market for Good h in year t 

Other firms  
from Chinese  
province p(f) 

Other firms from  
from other  
countries 

Other firms from  
other Chinese  

Provinces –p(f) 

Firm f   
from Chinese  
province p(f) 

3.3 Competition 2: Competition in Foreign Markets

In this section we turn to an alternative measure of competition that has not been con-
sidered before. We examine the impact of Chinese firms competing with each other in
foreign markets. To motivate our approach consider a world geography in which there
are countries and, within China, there are provinces. We treat countries and Chinese
provinces as the geographic units so that Chinese provinces are like countries in the
model, meaning, each has its own unique cost structures. This is illustrated in figure 3.
There is a foreign market for some good h in year t. We are interested in the competition
that a target firm f in province p(f) faces when exporting into this foreign market. This
competition comes from firms in the same province p(f), from firms in other provinces
−p(f), and from firms in other countries. As in our model, the degree of competition
comes from underlying cost differences in the various provinces and countries. For firms
in other countries, the data are not at the firm level and so are subsumed into the industry-
year fixed effects. For firms from the same province, they compete with f but because
the also share observed and unobserved attributes common to all firms in province p(f),
their exports into the foreign market will capture common unobserved shocks and not
just competition. For firms in other provinces −r(f) their exports into the foreign market
will be closer to a pure competition effect.

Operationally, let X−f,ht be the exports of good h in year t summed over all Chinese
firms who are not in firm f ’s province. Then:

(Competition into Foreign Markets)ft ≡ ln

(
1 +

∑
h

ωfht0X−f,ht

)
(6)

where ωfht0 was introduced in the discussion leading up to equation (4). For brevity, we
referred to this more simply as Export Competitionft.

Table 8 presents the results of regressing our standard dependent variables on Export
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Table 8: Impacts of Competition in Foreign Markets

Quality Markups RTFP
Innovation:   

Principal 
Component

Patents R&D / 
Sales

(New Product 
Sales) / 
(Sales)

Export Competition ft 0.036*** -0.017** -0.025*** -0.017*** -2.469*** -0.013*** -0.132***
(0.005) (0.008) (0.008) (0.002) (0.450) (0.002) (0.030)

Controls (f ,t )

SOE Status 0.044 -0.627*** 0.244** 0.044*** -1.707 0.084*** -0.024
(0.044) (0.102) (0.106) (0.008) (1.226) (0.011) (0.123)

Foreign Invested -0.000 -0.028 0.133** 0.037*** -1.622 0.057*** -0.013
(0.009) (0.068) (0.062) (0.006) (0.012) (0.007) (0.101)

City Wage 0.176 -3.334*** -2.187*** 0.069 -0.002 0.035 1.140
(0.309) (0.601) (0.685) (0.045) (0.076) (0.040) (0.715)

R 2 0.787 0.963 0.897 0.659 0.624 0.568 0.683
# observations 84,771 633,811 633,811 781,137 781,137 781,137 781,137
# firm f  FEs 27,174 195,721 195,721 251,005 251,005 251,005 251,005
# year-ind4 (i, t) FEs 1,989 2,409 2,409 2,964 2,964 2,964 2,964
# year-city (c ,t ) FEs 1,354 2,360 2,360 2,041 2,041 2,041 2,041

Notes: Each column is an OLS estimate of equation (3). The dependent variable is listed in the header. The
key independent variable is export competition defined in equation (6). The coefficients and standard errors
for log markups, RTFP, R&D and new sales are multiplied by 100. Standard errors appear in parentheses
and are clustered at the firm level.

Competitionft. Firms that face stiffer competition in foreign markets from Chinese firms
in other provinces respond by increasing quality at the cost of lower RTFP, by reducing
markups, and by reducing all measures of innovation.

3.4 Scale and Competition: Econometric Conclusions

We have documented very significant effects of scale and competition, the latter in-
cluding competition both within China and into foreign markets. Scale and competition
impacted quality, RTFP, markups, and three measures of innovation. Further, we docu-
mented very substantial degrees of response heterogeneity across firms of different sizes.
These econometric results are in need of a model for two reasons. First, not all of the re-
sults are obvious: a model is needed for thinking about the form of the heterogeneity. Sec-
ond and perhaps more importantly, the econometric estimates are difference-in-difference
estimates of relative effects. A calibrated model is needed to investigate level effects.
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4 Closed Economy Model

Motivated by the econometric results discussed above, we now develop and study a
structural model of trade and innovation. This structural approach will offer several addi-
tional insights. First, it formalizes a theory of how firms might innovate to escape changes
in competition induced by trade. Second, the calibrated model offers a quantification of
the effects of trade on innovation, and of how the levels of these effects vary across firms.
Third, the model serves to formally decompose the effects of trade on innovation into the
scale and competition channels highlighted by our econometric results.

4.1 Model environment

4.1.1 Demand

There are two types of goods in the economy: a homogeneous numeraire good and
a differentiated good. The differentiated good is available in multiple grades indexed by
g ∈ {1, · · · , G}with 1 < G <∞, and each grade of the differentiated good is produced by
a continuum of firms of endogenous measure. There is a measure L of households each
endowed with one unit of labor, which is supplied inelastically. Time is continuous, and
each household has preferences given by:

Ūt =

∫ ∞
0

e−βsUt+sds (7)

Ut = Q0
t +

G∑
g=1

Qg
t (8)

Qg
t = αg0

∫
Ωg

t

(
sgqgf,t

)
df − 1

2
αg1

∫
Ωg

t

(
sgqgf,t

)2
df − 1

2
αg2

[∫
Ωg

t

(
sgqgf,t

)
df

]2

(9)

Here,Q0
t denotes consumption of the numeraire good,Qg

t denotes consumption of a grade
g bundle of the differentiated good, qgf,t for f ∈ Ωg

t denotes consumption of firm f ’s variety
of a grade g good, and Ωg

t denotes the set of firms producing grade g varieties. Note that
preferences are: (i) linear across time (7); (ii) linear across the numeraire and grades of
the differentiated good (8); and (iii) of the Melitz-Ottaviano (2008) type within a grade of
the differentiated good (9). Furthermore, note that despite the linearity of preferences in
equation (8), there is love of variety within each grade in equation (9), and hence no two
varieties of the differentiated good are perfect substitutes.

The weights {sg}Gg=1 in (9) reflect exogenous quality differences across grades, while
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the preference parameters {αg0, α
g
1, α

g
2}
G
g=1 are also heterogeneous across grades and can

be interpreted as follows. First, αg0 is a demand shifter capturing the extent to which the
household prefers grade g varieties of the differentiated good relative to the homoge-
neous good or other grades of the differentiated product. Second, αg1 indexes the degree
of product differentiation: as αg1 → 0, all varieties within the grade become perfect substi-
tutes. Third, αg2 captures the extent of competition effects: as αg2 → 0, utility is additively
separable across varieties within the grade, and hence demand for one variety does not
depend on demand for any other variety.

This preference structure implies linear demand functions given by:

q̄gf,t ≡ Lsgqgf,t =
αg0L

αg1 + αg2N
g
t

+

(
α2N

g
t

α1 + α2N
g
t

)(
L

α1

)
p̄gt −

(
L

α1

)
p̂gf,t (10)

where q̄gf,t is aggregate quality-adjusted demand for firm f ’s output, p̂gf,t ≡ pgf,t/s
g is the

quality-adjusted price charged by firm f , p̄gt ≡ 1
Ng

t

∫
Ωg

t
p̂gf,tdf is the average quality-adjusted

price charged by firms producing grade g varieties, and N g
t is the measure of firms pro-

ducing grade g varieties. Note that because of the quasi-linear demand structure (equa-
tion (8)), the demand for a firm’s output depends only on the mass of competitors within
its own grade as well as the prices charged by these firms. In other words, there is compe-
tition within grades but not across grades. This allows us to focus on the effects of com-
petition within the firm’s most immediate market, while abstracting from other sources
of competition in order to reduce the computational complexity of the model.

4.1.2 Production and pricing

The production structure of the model is as follows. First, the numeraire good is pro-
duced one-for-one using labor under perfect competition, which implies a unit wage.20

Next, all firms producing grade g varieties have access to the same production technol-
ogy, which enables production of one unit of the good using cg units of labor.

Each firm f ∈ Ωg
t then takes N g

t and p̄gt as given, and chooses p̂gf,t to maximize prof-
its subject to the demand function (10). Since all firms within the grade have the same
marginal cost, each firm chooses the same profit-maximizing price, and we henceforth
omit the firm subscript. We also now omit time subscripts for brevity. The solution to the
firm profit-maximization problem implies that markups (price over marginal cost), sales,

20We assume that the total labor supply L is large enough such that the numeraire is indeed produced
and consumed in equilibrium.
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and profits for each firm operating in grade g can be expressed as:

µg =
φg + ρg

ρg
(11)

yg = Lκgφg (φg + ρg) (12)

πg = Lκg (φg)2 (13)

Here, the role of technology (cost per unit of quality demanded) is captured by the com-
posite parameter:

ρg ≡ cg

αg0s
g
, (14)

the role of scale is captured by the composite parameter:

κg ≡ (αg0)2

αg1
, (15)

the strength of competition is captured by the composite parameter:

αg ≡ αg2
αg1
, (16)

and φg is an endogenous variable that declines with the mass of firms operating within
the grade:

φg ≡ 1− ρg

2 + αgN g
(17)

Note that for these variables, the identifiable parameter set collapses from five parameters
{αg0, α

g
1, α

g
2, s

g, cg} to three parameters {ρg, κg, αg}.
Importantly, observe that the measure of active firms N g determines the level of com-

petition within the grade, and as N g increases, markups, sales, and profits all decline.
In equilibrium, {Ng}Gg=1 is determined endogenously by firms’ innovation decisions, as
described below in section 4.1.4. Furthermore, since the household’s marginal utility of
consuming any given variety is bounded, there is a maximum price above which the de-
mand specified by (10) is equal to zero. We therefore assume that grade qualities and
costs vary in such a way that output and profits are positive for any finite N g.

Assumption 1. For each grade g ∈ {1, · · · , G}, the cost per unit of quality demanded satisfies
ρg < 1.
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4.1.3 Innovation

In addition to making production decisions, firms also engage in innovative activities.
We assume that each firm has access to the production technology for at most one grade
at a time, but can move up the grade ladder by investing in R&D.21 Specifically, a grade
g firm that hires RDg (ag) units of labor for R&D activities advances to grade g + 1 ac-
cording to a Poisson process with rate ag. Upon a successful innovation, the firm adopts
the grade g + 1 technology and discards the grade g technology; there is hence creative
destruction within the firm. The function RDg captures grade-specific innovation costs,
and is assumed to satisfy the following regularity properties.

Assumption 2. For each grade g ∈ {1, · · · , G− 1}, the innovation cost function RDg : R+ →
R+ satisfies (i) RDg′ > 0, (ii) RDg′′ > 0, RDg (0) = 0, (iii) lima→0RD

g′ (a) = 0, and (iv)
lima→∞RD

g′ (a) =∞.

In what follows, we will study steady-states of the model in which the value of being
a grade g producer, V g, is constant over time. Given the innovation process, the values
{V g}G−1

g=1 must then satisfy the following Bellman equation:

(β + ε)V g = max
ag

{
πg −RDg (ag) + ag

(
V g+1 − V g

)}
(18)

where ε is the rate of exogenous firm exit. Evidently, if V g+1 ≤ V g, a grade g firm will
not choose to innovate and therefore will optimally choose ag = 0. On the other hand
if V g+1 > V g, the firm would like to move up the grade ladder. The optimal innovation
decision for the firm can then be generally characterized by:

RDg′ (ag) = max
{
V g+1 − V g, 0

}
(19)

which admits a unique solution for ag given assumption 2.
The first-order condition (19) captures the essence of the theory of innovation in this

model. In particular, note that the incentive to innovate depends on the difference be-
tween pre- and post-innovation values. The effects of scale on innovation can thus heuris-
tically be interpreted as a proportional change in both V g and V g+1: if the market for the
differentiated product becomes larger overall, firms have greater incentive to innovate.
On the other hand, the effects of competition may affect V g and V g+1 differentially. If a

21The assumption that firms produce a single product at a time is without loss of generality if firms make
innovation decisions at the product level and there are no innovation spillovers across products within a
firm. For issues of tractability, we abstract from the more general case of multiproduct firms with innovation
that spills over across products.
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firm faces more competitors in its current grade (larger N g), the value of failing to suc-
cessfully innovate falls (smaller V g), and hence innovation is incentivized. Conversely, if
competition is tougher in the post-innovation market (larger N g+1), the value of success-
fully innovating falls (smaller V g+1), and hence innovation is disincentivized.

To complete the description of innovation in the model, it remains to specify what
occurs at the boundaries of the grade ladder: how firms at the frontier grade G innovate,
and how firms enter the market. First, since the number of grades is assumed to be finite,
we model innovation by firms at the frontier by assuming that these firms innovate to
reduce the hazard rate of exit. The value of operating as a grade G firm then satisfies:

βV G = max
aG

{
πG −RDG

(
aG
)
− εG

(
aG
)
V G
}

(20)

where εG is a function specifying the exit rate at the frontier, and is assumed to satisfy the
following regularity properties.22

Assumption 3. The frontier exit rate function εG : R+ → R+ satisfies (i) εG′
< 0, (ii) εG′′

> 0,
and (iii) lima→0 ε

G′
(a) < 0.

The first-order condition for innovation at the frontier is then:

RDG′ (
aG
)

= −εG′ (
aG
)
V G (21)

which admits a unique solution for aG given assumption 3.
Finally, any firm wishing to enter the market for the differentiated good can hire fE

units of labor as an entry cost, following which it obtains the technology for producing a
new variety of grade g = 1. Free entry then requires:

V 1 = fE (22)

4.1.4 Mass of firms in steady-state

To determine the measure of firms producing each grade of the differentiated good,
we consider the implications of a steady-state equilibrium. First, note that at each point in
time, a measure NE of firms enter and become grade 1 producers, a measureεN1 of grade
1 producers exit the economy, and a measure a1N1 of grade 1 producers successfully
innovate and become grade 2 producers. Therefore in steady-state, the measure of grade
1 producers must satisfy:

NE =
(
ε+ a1

)
N1 (23)

22In practice, we use a simple functional form εG (a) = 1/a.
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Next, consider the inflow and outflow of grade g producers for g ∈ {2, · · ·G− 1}. At
each point in time, a measure ag−1N g−1 of grade g − 1 producers successfully innovate
to become grade g producers. Simultaneously, a measure εN g of grade g producers exit
and a measure agN g successfully innovate to become grade g+ 1 producers. Therefore, in
steady-state, the masses of firms must satisfy:

ag−1N g−1 = (ε+ ag)N g (24)

Finally, at the frontier gradeG, a measure aG−1NG−1 of gradeG−1 producers successfully
innovate to become gradeG producers, while a measure εG

(
aG
)
NG of gradeG producers

exit. Hence:
aG−1NG−1 = ε

(
aG
)
NG (25)

4.1.5 Labor market

With the quasi-linear demand structure, labor market clearing simply requires that
the numeraire good is indeed produced in equilibrium. Specifically, the total amount of
labor employed by firms in the differentiated goods sector for production, innovation,
and entry costs must be less than the total labor endowment:

Q̄0 ≡ LQ0 = L−NEfE −
G∑
g=1

N g [lg +RDg (ag)] > 0 (26)

where production labor hired by each grade g firm is:

lg = Lκgρgφg (27)

4.1.6 Welfare

Household utility at each point in time is given by (8). Consumption of the numeraire
is given by (26), while consumption of the grade g bundle can be expressed as:

Qg = κgN gφg − 1

2
κgN g (φg)2 − 1

2
αgκg (N gφg)2 (28)

Note again from equations (26)-(28) that of the set of original model parameters {αg0, α
g
1, α

g
2, s

g, cg},
only the composites {ρg, κg, αg}matter for welfare.23

23While the size of the labor endowment L does not matter independently from the scale composite
parameters {κg}Gg=1 for outcomes within the differentiated sector, it does matter for welfare because L de-
termines the size of the differentiated sector relative to the numeraire sector under quasi-linear preferences.
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4.2 Equilibrium definition and solution

4.2.1 Equilibrium definition

A steady-state equilibrium of the model is a mass of entry NE , a sequence of firm
masses {N g}Gg=1, a sequence of profits {πg}Gg=1, a sequence of product innovation rates
{ag}Gg=1, and a sequence of firm values {V g}Gg=1, all of which satisfy the profit equation
(13), Bellman equations (18) and (20), R&D optimality conditions (19) and (21), free-entry
condition (22), steady-state entry conditions (23)-(25), and the labor market condition (26).

4.2.2 Solution algorithm

To solve the model, we iterate backwards on the Bellman equation (18) according to
the following algorithm, which takes several seconds on a standard personal computer:

1. Guess NG and compute V G and aG from (20) and (21).

2. For g ∈ {1, · · · , G− 1}, given V g+1, N g+1, and ag+1, numerically solve (18), (19), and
(24) to obtain V g, N g, and ag.

3. Compute NE from (23).

4. Repeat steps 1-3, adjusting the guess of NG until the free-entry condition (22) is
satisfied.

5. Check that the labor market condition (26) holds.

5 Open Economy Model

We now extend the model developed above to incorporate multiple (potentially asym-
metric) locations and trade costs. Here,we develop the general case with an arbitrary
number of countries, and then focus on a North-South model in the calibration and coun-
terfactual simulations of the model.

5.1 Model environment

There are J ≥ 2 locations. These locations are potentially asymmetric in terms of
labor endowments {Li}Ji=1, wages {wi}Ji=1, entry costs

{
fEi
}N
i=1

, production technologies
{sgi , c

g
i }
N
i=1, and R&D costs {RDg

i }
N
i=1. Given the available data, we assume that house-

holds in every location have identical preferences given by (7)-(9). We also assume that
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there are iceberg trade costs {τij}Ji,j=1 between locations, where τij ≥ 1 denotes the cost of
shipping goods from j to i. Finally, we assume that the numeraire good is freely traded
and produced using 1

wi
units of labor in location i, so that wi is also the wage in country

i.24 As in the closed economy model, we focus on steady-state equilibria in which the
masses of firms producing each grade are time-invariant.

5.1.1 Demand

Consider a firm from location j with access to grade g technology. The demand func-
tion faced by this firm in the location i market takes the same form as (10), and is given
by:

q̄gij ≡ Lis
g
jq
g
ij =

αg0Li
αg1 + αg2N

g
i

+

(
αg2N

g
i

αg1 + αg2N
g
i

)(
Li
αg1

)
p̄gi −

(
Li
αg1

)
p̂gij (29)

where p̂gij is the quality-adjusted price charged by the firm. Here, N g
i =

∑J
j=1 N

g
ij denotes

the measure of firms supplying location i with grade g varieties, where N g
ij is the measure

of these firms that supply i from j. The average quality-adjusted price charged by firms
supplying grade g varieties in location i is given by p̄gi = 1

Ng
i

∑J
j=1 N

g
ij p̂

g
ij .

5.1.2 Production

With positive trade costs, it is possible that some grades will not be traded across loca-
tions. In contrast with the closed economy model, we therefore now have to differentiate
between the measure of firms that supply location i with grade g varieties, N g

i , and the
measure of firms that have access to the technology for producing grade g varieties in
location i, M g

i .
As shown in the appendix, grade g producers in j will find it profitable to sell in i if

and only if their supply cost ρgij ≡
wjc

g
j τij

αg
0s

g
j

is below a certain threshold value ρgi,max:

ρgij ≤ ρgi,max ≡
2 + ρ̄giα

gN g
i

2 + αgN g
i

(30)

Observe that the right-hand side of (30) does not vary with the source country j. This
implies that in any equilibrium of the model, grade g varieties are supplied to location i

from source countries with the lowest supply costs. Condition (30) can also be written as:

ρgij ≤ 1− 1

2
αgρ̃gij (31)

24As before, we assume that labor endowments in each location are large enough such that the numeraire
is produced and consumed in positive amounts in all locations.
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where ρ̃gij summarizes the state of technology for all suppliers in the grade g market in
location i relative to technology for firms from j:

ρ̃gij ≡
J∑
k=1

N g
ik

(
ρgij − ρ

g
ik

)
(32)

Note that given the supply cost ρgij for firms from j, the term ρ̃gij is greater when there are
more firms selling in i with supply costs lower than ρgij , or when there are fewer firms
selling in i with supply costs greater than ρgij . Furthermore, observe that ρ̃gij depends only
on the measure of suppliers in i from all locations other than j, and in particular does not
depend on N g

ij . This implies that in any equilibrium of the model, either all firms from j

with access to grade g technology sell in i or none of them do:

N g
ij =

M
g
j , if ρgij ≤ ρgi,max

0 , o/w
(33)

Assuming condition (31) holds, the solution for firm prices then implies the following
expressions for equilibrium markups, sales, and profits:

µgij =
φgij + ρgij
ρgij

(34)

ygij = Liκ
gφgij

(
φgij + ρgij

)
(35)

πgij = Liκ
g
(
φgij
)2 (36)

As in the closed economy, φgij is an endogenous variable that summarizes the effect of
competition from other firms:

φgij ≡
1− ρgij − 1

2
αgρ̃gij

2 + αgN g
i

(37)

Note that because firms from different locations have potentially different production
technologies, what matters for the degree of competition is not only the measure of com-
petitors (N g

i ), but also the supply costs of a firm’s competitors relative to its own supply
cost (ρ̃gij). Observe that if supply costs are identical across all source locations, then ρ̃gij = 0

and expressions (34), (35), and (36) reduce to their closed-economy counterparts (11), (12),
and (13). In this special case, the market for grade g varieties in i resembles a closed econ-
omy.

Finally, to ensure that all locations can be profitably supplied with each grade of the
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differentiated good by firms from at least one location, we make the following assump-
tion.

Assumption 4. For each location i ∈ {1, · · · , J} and each grade g ∈ {1, · · · , G}, the minimum
marginal supply cost satisfies minj∈{1,··· ,J} ρ

g
ij < 1.

5.1.3 Innovation

The innovation process in the open economy is the same as in the closed economy.
Firms in each location choose investments in R&D and move up the grade ladder stochas-
tically subject to an exit shock that arrives with identical Poisson rate ε in all locations. The
value of being a producer in location i of a variety of grade g < G then satisfies:

(β + ε)V g
i = max

agi

{
πgi − wiRD

g
i (agi ) + agi

(
V g+1
i − V g

i

)}
(38)

As before, the optimal innovation decision is characterized in general by:

RDg′

i (agi ) = max
{
V g+1
i − V g

i , 0
}

(39)

Similarly, at the frontier grade G where innovation reduces the hazard rate of exit, the
value of a firm satisfies:

βV G
i = max

aGi

{
πGi − wiRDG

i

(
aGi
)

+ ε
(
aGi
)
V G
i

}
(40)

while the optimal innovation decision is characterized by:

wiRD
G
i

(
aGi
)

= −ε′
(
aGi
)
V G
i

The key difference here relative to the closed economy is that now total profits in (38) and
(40) are the sum of domestic profits and profits across all potential export destinations:

πgi =
J∑
j=1

πgji (41)

5.1.4 Entry

Firms in location i can enter the economy by paying an entry cost of fEi units of labor
to obtain technology for producing a grade 1 variety. Free entry in each location therefore
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imposes:
V 1
i = fEi (42)

5.1.5 Steady-state firm grade distribution

Following the same logic as for the closed-economy, the steady-state mass of produc-
ers for each grade in location i satisfies the following:

ME
i =

(
ε+ a1

i

)
M1

i (43)

where ME
i denotes the mass of entrants. For g ∈ {2, · · · , G− 1}, the equilibrium relation

is:
ag−1
i M g−1

i = (ε+ agi )M
g
i (44)

while at the frontier grade:
aG−1
i MG−1

i = ε
(
aGi
)
MG

i (45)

5.1.6 Labor market

In order for the numeraire good to be produced in all locations in equilibrium, the
total amount of labor employed by firms in the differentiated goods sector for production,
innovation, and entry costs must be less than the total labor endowment:

Li −ME
i f

E
i −

G∑
g=1

[
J∑
j=1

N g
jil
g
ij +M g

i wiRD
g
i (agi )

]
> 0 (46)

where total production labor hired by grade g producers in j that sell in i is given by:

lgij = Liκ
gρgijφ

g
ij (47)

5.1.7 Welfare

Household utility in location i at each point in time is given by:

Ui = Q0
i +

G∑
g=1

sgQg
i (48)

Since the numeraire is assumed to be freely traded, production and consumption of the
numeraire in each location need not be equal. Each household’s consumption of the nu-
meraire in location i is given by its income net of expenditures on differentiated products.
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Household income is the sum of wages and firm profits (we assume that aggregate profits
in each location are disbursed equally to all households in that location). Hence:

LiQ
0
i = wiLi + Πi −

G∑
g=1

J∑
j=1

N g
ijy

g
ij (49)

Πi =
G∑
g=1

[
J∑
j=1

N g
jiπ

g
ji −M

g
i wiRD

g
i (agi )

]
−ME

i f
E
i (50)

Finally, consumption of the grade g bundle can be expressed as:

Qg
i = κg

G∑
j=1

N g
ijφ

g
ij −

1

2
κg

J∑
j=1

N g
ij

(
φgij
)2 − 1

2
αgκg

(
J∑
j=1

N g
ijφ

g
ij

)2

(51)

As in the closed economy, note that of the set of original model parameters
{
αg0, α

g
1, α

g
2, s

g
i , c

g
ij

}
,

only the composites ρgij , α
g, and κg matter for welfare.

5.2 Equilibrium definition and solution

5.2.1 Equilibrium definition

A steady-state equilibrium of the open-economy model is a list of sequences for en-

try
{
ME

i

}J
i=1

, production
{
{M g

i }
G
g=1

}J
i=1

, supply
{{
N g
ij

}G
g=1

}J
i,j=1

, profits
{{
πgij
}G
g=1

}J
i,j=1

,

innovation probabilities
{
{agi }

G
g=1

}J
i=1

, and firm values
{
{V g

i }
G
g=1

}J
i=1

, all of which satisfy
the supply conditions (33), profit equations (36), Bellman equations (38) and (40), R&D
optimality conditions (39), free-entry conditions (42), steady-state entry conditions (43)-
(45), and the labor market condition (46).

5.2.2 Solution algorithm

To solve the model, we employ a computational algorithm similar to that used to
solve the closed-economy model (described in section 4.2.2), which as before takes several
seconds on a standard personal computer. Again, this involves guessing the measure of
firms operating at the frontier grade in each market, iterating backwards on the Bellman
equation (38), and then checking the free-entry condition (42) and labor market condition
(46). Interested readers are referred to the online appendix for a detailed description of
the solution algorithm for the open economy model.
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6 Model Calibration

To calibrate the model, we focus on an economy with J = 2 countries and use data
for Chinese firms as described above, as well as data for Canadian firms obtained from
Statistics Canada. The latter data are used to represent OECD firms, so as to capture
trade between China and developed countries as a whole. As such, we scale the number
of Canadian firms by the ratio of OECD to Canadian gross domestic product, and weight
the export data by the relevant China-OECD trade shares. The implicit assumption made
here is that Canadian firms are representative of OECD firms in terms of firm-level char-
acteristics such as sales, exports, profits, and R&D.

6.1 Model parameters

The only functional form assumptions that need to be imposed before proceeding with

the model calibration are for the innovation costs
{
{RDg

i }
G
g=1

}J
i=1

. Here, we assume con-
stant elasticity functions:

RDg
i (a) = bgi a

ηgi (52)

where bgi measures the level of R&D costs and ηgi captures the sensitivity of R&D costs to
the innovation rate. This parameterization allows us to solve the R&D first-order condi-
tions analytically and speeds up the computation significantly.

The model thus has the following sets of parameters (parameter count in parentheses)
- demand parameters (2G):

ΘD ≡ {κg, αg}Gg=1 , (53)

technology parameters (J2G):

ΘP ≡
{{
ρgij
}G
g=1

}J
i,j=1

, (54)

innovation parameters (J (2G+ 1)):

ΘI ≡
{
fEi , {b

g
i , η

g
i }

G
g=1

}J
i=1

, (55)

country-level macro parameters (2J):

ΘM = {wi, Li}Ji=1 , (56)

41



and a set of parameters {β, ε, G} that will not be calibrated to data.25

6.2 Assignment of grades

To calibrate the model’s parameters, we first need to take a stand on what defines a
“grade” in the data. In the model, grades are technically defined by segmentation of the
differentiated goods sector along various dimensions: demand characteristics, produc-
tion technologies, and innovation costs. Furthermore, the model’s assumptions imply
that all firms within a grade are identical in every one of these aspects. Hence, assigning
firms in the data to grades is not a straightforward task for two reasons. First, it is not
immediately obvious what the most relevant variables for clustering firms should be. For
example, should we consider firms that have similar production costs or innovation costs
as belonging to the same grade? Second, many of the primitive grade-level characteristics
are not directly observable.

To deal with this issue, we explore several avenues. First, the notion of firms operating
in segmented markets is in essence a demand-side construct: consumers perceive differ-
ent grades as having different characteristics that matter for utility. From this perspective,
the most natural way to define grades would be by the quality of products that firms pro-
duce. As discussed in section 2.3, however, we are able to obtain quality estimates only
for Chinese firms that are matched to the customs data. Hence, while assigning grades
based on quality would be economically appealing, this would preclude us from studying
firms in the full CME sample.

A second option for defining grades would be to focus on the interaction between
competition and innovation. From this perspective, the most salient characteristic of a
grade is its competitive environment. It is precisely because grades differ along this di-
mension that the model allows us to study how trade affects innovation through not only
the standard scale channel but through competitive effects as well. As such, a potential
solution is to group firms based on the markup estimates described in section 2.2. Given
the data available to us at the moment, this is a feasible option for Chinese firms, but not
for the Canadian firms that we use to calibrate the open economy model, although we
are currently working with Statistics Canada to estimate markups for Canadian firms as
well, which would relax this data constraint.

Finally, the most straightforward option for defining grades is to group firms based
on size. In the model calibration and simulation described below, we adopt this ap-

25We set the discount factor and exit rates to typical values (e−β = .95, e−ε = .9). In the baseline analysis,
we set the number of grades atG = 10, and explore how different values ofG affect our quantitative results.
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proach for the time being due to data availability. Specifically, the assignment of firms
to grades in the data is determined by implementing a k-means clustering algorithm on
firm sales, which finds the grouping of firms that minimizes the within-group variance
of sales. To account for differences across industries and time, the clustering algorithm is
implemented separately for each industry-year.

To investigate the robustness of this clustering approach, Figure 4 compares the char-
acteristics of grades defined by both sales and markups for Chinese firms in our data. The
results are reassuring: clustering on either firm sales or markups yields grades that are
generally increasing in sales, exports, profits, R&D expenditures, markups, and quality,
and decreasing in the number of operating firms and the level of competition from other
Chinese firms (equation (6)). In particular, the average estimated markups within each
grade are almost identical whether grades are defined by markups or sales. As such, we
are confident that the results shown below will be similar to results we hope to eventually
obtain based on markup clustering for both Chinese and Canadian firms.

6.3 Calibration algorithm

Having assigned firms in the data to grades, we then calibrate the demand, technol-
ogy, and innovation parameters {ΘD,ΘP ,ΘI , } by targeting average sales, exports, prof-
its, and R&D for firms within each grade, as well as the number of firms operating within
each grade:

ygi = ỹgi (57)

ygxi = ỹgxi (58)

πgi = π̃gi (59)

RDg
i = R̃D

g

i (60)

N g
i = Ñ g

i (61)

where x̃ denotes the value of a variable x in the data. The calibration algorithm that
achieves this proceeds in three steps.

First, suppose that the model exactly matches the number of firms in each grade-

market,
{
{N g

i }
G
g=1

}2

i=1
. Then for each grade g ∈ {1, · · · , G}, the two demand parameters

{κg, αg} and four production technology parameters
{
ρgij
}2

i,j=1
can be chosen to exactly

match the six moment conditions (57)-(59), where sales, exports, and profits are given
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Figure 4: Clustering of Chinese firms by sales and markups
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by equations (35)-(36). Intuitively, sales, exports, and profits identify demand, cost, and
quality parameters.

Second, suppose that the model exactly matches the number of firms operating at the
frontier grade in each market,

{
NG
i

}2

i=1
. Then for gradeG, the four innovation parameters{

bGi , η
G
i

}2

i=1
can be chosen to exactly match the two moment conditions (60) and the tar-

geted exit rates in each location, εG
(
aGi
)

= ε. Similarly, for each grade g ∈ {1, · · · , G− 1},
the four innovation parameters

{
bGi , η

G
i

}2

i=1
can be chosen to exactly match the four mo-

ment conditions (60)-(61). Intuitively, R&D expenses and the relative distribution of firms
across grades identify the innovation parameters.

Third, to ensure that the model does in fact match moment condition (61) for the fron-
tier grade G, a simple two-dimensional search over the space of values for the entry costs{
fEi
}2

i=1
is implemented. Intuitively, the overall level of entry identifies the entry costs.

This last step of the calibration algorithm ensures that the first two steps yield parameter
values that allow the model to match all targeted moments exactly.

Finally, the country-level macro parameters ΘM are calibrated as follows. First, we
interpret the differentiated goods sector as representing manufacturing, and choose the
labor endowments {Li}Gi=1 to match manufacturing shares of 40% and 20% in China and
the OECD respectively. Second, the wage in China is chosen as the numeraire, and the
OECD wage is chosen to match relative hourly compensation costs based on data from
the Bureau of Labor Statistics’ International Labor Comparisons dataset.

6.4 Calibration results

6.4.1 Model fit

The fit of the model to the targeted moments is shown in Figure 5. The model is
exactly identified by construction, and hence the model matches the targeted moments
exactly. Note that the k-means clustering algorithm on sales within industry-year gener-
ates groupings of firms such that higher grades generally have larger average firm sales,
exports, profits, and R&D, as well as fewer operating firms.

6.4.2 Equilibrium innovation rates

The equilibrium innovation rates implied by the model for Chinese and OECD firms
are shown in Figure 6. Note that for both locations, the innovation rates exhibit an
inverted-U pattern: firms that are either very far from the frontier grade or very close to it
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Figure 5: Model fit
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Figure 6: Equilibrium innovation rates

choose lower innovation rates than firms in the middle of the grade ladder. We interpret
this result as being consistent with the “escape-the-competition” motive for innovation,
as firms in the middle of the grade ladder face the greatest incentive to invest in R&D, so
as to escape from tougher competition at lower grades and to move towards the frontier
grade where competition is less intense and profits are higher.

7 Counterfactual Exercises

To study the effects of trade on innovation, we employ the model developed above
to simulate two counterfactual exercises: a 5% reduction in the cost of exporting (for all
grades) from China to the OECD, and a 5% reduction in the cost of exporting (for all
grades) from the OECD to China. In each case, we examine the responses of six variables:
(i) firm sales, (ii) exports, (iii) profits, (iv) R&D, (v) equilibrium innovation rates, and (vi)
the measure of firms operating in each grade.

7.1 Lower export costs for Chinese firms

First, consider the effects of lower export costs from China to the OECD. The results
of this counterfactual simulation are summarized in Figure 7. Here, we see that sales,
exports, profits, R&D, equilibrium innovation rates, and the measure of firms in each
grade increase for Chinese firms in all grades. This is intuitive: lower export costs lead to
greater firm size and profitability, which raises the incentives for R&D, leading to higher
innovation rates. Since firm values increase, more Chinese firms enter the market. For
OECD firms, on the other hand, firm size and exports fall, and the measure of operating
firms decreases in all grades. Again, this is intuitive: more competition from Chinese
firms reduces OECD firm size and leads some firms to exit the market.
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One might conclude from these results that lower Chinese export costs must there-
fore reduce R&D and innovation by OECD firms. Note from Figure 7, however, that the
converse is true: R&D and equilibrium innovation rates increase for OECD firms in al-
most all grades. The reason for this is that the reduction in Chinese export costs affects
OECD firms operating in different grades differentially. In particular, it reduces profits for
firms operating in the lowest grades, but increases profits for firms operating in the high-
est grades. This latter effect is possible only because the reduction in Chinese export costs
induces exit by some OECD firms, which reduces domestic OECD competition. Hence,
the reduction in Chinese export costs raises the value of operating in high grades versus
low grades for OECD firms, which from the R&D first-order condition (39) leads to an
increase in innovation.

The result that lower Chinese export costs can induce an increase in innovation by
OECD firms stems from the differential effects of the scale and competition channels em-
bedded in the model. In particular, these simulations suggest the importance of account-
ing for both mechanisms when evaluating the effect of trade on firm-level innovation.

7.2 Lower export costs for OECD firms

Next, consider the effects of lower export costs from the OECD to China. The results
of this counterfactual simulation are summarized in Figure 8, and are in essence the im-
mediate opposite of those observed in the first simulation discussed above. In particular,
sales, exports, profits, and the measure of firms in each grade increase for OECD firms
and fall for Chinese firms in all grades. These responses are again intuitive for the rea-
sons discussed above.

However, in response to lower OECD export costs, R&D and equilibrium innovation
rates fall for both Chinese and OECD firms. For Chinese firms, the increase in competi-
tion from OECD firms reduces the incentive to innovate, hence leading to lower R&D in
equilibrium. For OECD firms, the fall in export costs induces more OECD firms to enter
the market. Hence, although profits increase because of the reduction in trade costs, the
increase in entry causes profits for firms operating in the highest grades to fall relative to
profits for firms in the lowest grades, which also reduces the incentives for innovation by
OECD firms.
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Figure 7: Counterfactual: 5% reduction in export costs from China to OECD
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Figure 8: Counterfactual: 5% reduction in export costs from OECD to China
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8 Conclusion

In this paper, we have established empirically that increased market size promotes
innovation as measured by innovation inputs (R&D and patents). Further, increased in-
novation leads to increased TFP, higher markups, a larger number of exported products
(increased variety), and an increase in the share of revenues generated by new products.
We also found that increased competition within China has important effects on firm-
level innovation, reducing innovation in the aggregate. The calibrated structural model
formalizes these economic mechanisms, and simulations of the model indicate that ac-
counting for the heterogeneous effects of trade on innovation by different firms through
both the scale and competition channels is essential for understanding firm-level innova-
tion in China. In particular, when firms can innovate to escape the competition, greater
competition induced by lower trade barriers can lead firms to increase innovation rather
than reduce it.
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A Pricing in the Open Economy

Assuming that it is profitable for grade g producers in j to sell in i, the demand func-
tion (29) implies the following optimal quality-adjusted price:

p̂gij =
1

2

(
p̂gi,max + αg0ρ

g
ij

)
(62)

where ρgij ≡
wjc

g
j τij

αg
0s

g
j

is the marginal cost of supplying a unit of quality demanded in loca-
tion i from location j for a grade g variety (henceforth, the “supply cost”), and p̂gi,max is
the maximum quality-adjusted price for grade g varieties in i at which demand is non-
negative :

p̂gi,max =
αg0α

g
1 + αg2N

g
i p̄

g
i

αg1 + αg2N
g
i

(63)

The average quality-adjusted price in i can then be written as:

p̄gi =
1

2

(
pgi,max + αg0ρ̄

g
i

)
(64)

where ρ̄gi is the average supply cost across producers from all locations supplying grade
g varieties in i:

ρ̄gi ≡
1

N g
i

J∑
j=1

N g
ijρ

g
ij (65)

Solving equations (62)-(64), we obtain the following expressions for the optimal, maxi-
mum, and average prices as functions of the masses of suppliers in i,

{
N g
ij

}J
j=1

:

p̂gij = αg0
(
φgij + ρgij

)
(66)

p̂gi,max = αg0

(
2 + αgρ̄giN

g
i

2 + αgN g
i

)
(67)

p̄gi = αg0

(
1 + ρ̄gi + ρ̄giα

gN g
i

2 + αgN g
i

)
(68)

Note that grade g producers in j will find it profitable to sell in i if and only if p̂gij ≤ p̂gi,max.
From (66) and (67), this is equivalent to the following condition:

ρgij ≤
2 + ρ̄giα

gN g
i

2 + αgN g
i

≡ ρgi,max (69)
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